ຂໍ້ມູນລະບາດວິທະຍາທາງດ້ານຄຼີນິກຂອງເຊື້ອ ESBL producing Escherichia coli and Klebsiella pneumoniae

ເຊີນຮ່ວມຮັບຟັງ **ທ່ານ ຄຳໃບ ນວຍລັດ,** ວິຊາການ ຂະແໜງວິເຄາະ, ສູນວິເຄາະ

ແລະ ລະບາດວິທະຍາ, ກະຊວງສາທາລະນະສຸກ. ເຊິ່ງທ່ານຈະໄດ້ຮັບຟັງ ການບັນລະ

ຍາຍ ກ່ຽວກັບຂໍ້ມູນລະບາດວິທະຍາທາງດ້ານຄຼີນິກຂອງເຊື້ອ ESBL producing

Escherichia coli ແລະ Klebsiella pneumoniae ຢູ່ ສປປ ລາວ ການບັນລະ

ຍາຍຈະຈັດຂຶ້ນໃນວັນທີ:

21 ມີນາ 2025

ເວລາ: 14:00PM – 15:00PM ໂມງ (GMT +7)

zoom

https://us06web.zoom.us/j/4593736274?omn=83132928941

ທ່ານ ຄຳໃບ ນວຍລັດ

ວິຊາການ ຂະແໜງວິເຄາະ,

ສູນວິເຄາະ ແລະ ລະບາດວິທະຍາ, ກະຊວງສາທາລະນະສຸກ.

Epidemiology of Clinical Isolates of Extended-Spectrum Beta-Lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae

Listen to Mr. Khambai Nuaylath, Technical Officer of Laboratory unit, National Center for Laboratory and Epidemiology, Ministry of Health gave a lecture on the point prevalence Epidemiology of Clinical Isolates of Extended-Spectrum Beta-Lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae in Lao PDR. The lecture will be held on:

21 March 2025

TIME: 14:00PM – 15:00PM (GMT +7)

zoom

Mr. Khambai Nuaylath
Technical Officer Laboratory unit, National center for
Laboratory and Epidemiology, Ministry of Health, Lao PDR

Epidemiology of Clinical Isolates of Extended-Spectrum Beta-Lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae in Lao PDR

Fellow: Dr. Khambai Nouaylath

AMR Laboratory Surveillance in Human

National Center for Laboratory and Epidemiology, Ministry of Health, Lao PDR

Mentor: Associate Professor Rujipas Sirijatuphat

Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand

Consultant: Professor Visanu Thamlikitkul

Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand

Background

- AMR burden is enormous in Southeast Asia in terms of morbidity, mortality and economic loss
- Regarding to Strategy for Antimicrobial Resistance (AMR) surveillance system in Lao PDR, AMR burden should be estimated
- Most of these resistant bacteria were extended-spectrum beta-lactam-betalactamase (ESBL) producing Enterobacteriaceae, especially *Escherichia coli* and *Klebsiella pneumoniae*
- ESBL-producing Enterobacteriaceae are the most common antibiotic-resistant bacteria causing gastrointestinal colonization in healthy people and both community-acquired and hospital-acquired infections in patients in many countries, especially in Asia including Lao PDR

Objective

- The objective of this study was to determine epidemiology in terms of the phenotypes and genotypes of clinical isolates of ESBL- producing *E. coli* and ESBL- producing *K. pneumoniae* in Lao PDR in 2020
- ຈຸດປະສົງຂອງການສຶກສາຄັ້ງນີ້ ແມ່ນເພື່ອກຳນົດການລະບາດຂອງ ພະຍາດກ່ຽວກັບປະກົດການ ແລະ genotypes ຂອງການໂດດດ່ຽວທາງ ດ້ານຄລີນິກຂອງ ESBL- ຜະລິດ E. coli ແລະ ESBL- ຜະລິດ K. pneumoniae ໃນ ສປປ ລາວ ໃນປີ 2020.

Methodology

- The study has 2 parts on determination of
 - ➤ Phenotype of ceftriaxone-resistant *E. coli* and *K. pneumoniae* clinical isolates by CLSI/ EUCAST standard disk diffusion method and Double Disks Synergy
 - ➤ Genotype of ceftriaxone-resistant *E. coli* and *K. pneumoniae* clinical isolates with ESBLs by detecting ESBL genes (*bla_{CTX-M}, bla_{TEM}*, *bla_{SHV}*) by polymerase chain reaction (PCR)
- Study design: Prospective cohort study
- Period of Study: February December 2020
- Study Sites for collection of bacteria:
 - ➤ Mahosot Hospital
 - ➤ Sethathirath Hospital
 - ➤ Khammuane Provincial Hospital
 - ➤ National Center for Laboratory and Epidemiology (NCLE)

Methodology

Sample size

- 200 isolates of ceftriaxone-resistant *E. coli* and ceftriaxone-resistant *K. pneumoniae* recovered from clinical specimens of different patients sent to microbiology service laboratories of Mahosot Hospital (N=50), Setthathirath Hospital (N=50), Khammoun Hospital (N=50) during February and December 2020, and the isolates kept at the National Center for Laboratory and Epidemiology or NCLE (N=50)
- Ceftriaxone-resistant *E. coli* and ceftriaxone-resistant *K. pneumoniae* isolates from participating hospitals were transported in Amies transport medium to NCLE
- The isolates were stored in nutrient broth with 20% glycerol at -80°C at NCLE for subsequent ESBL detection, antibiotic susceptibility test, and ESBL resistance genes detection

Oligonucleotide sequences of genes encoding β -lactamase used in this study by PCR

Gene	Primers sequence (5'→3')	Product size (bp)	Annealing Temp. (°C)
CTX-M_F CTX-M_R	5'-SCSA TGTGCAGYACCAGTAA-3' 5'-CCGCRATATGRTTGGTGGTG-3'	<mark>544 bp</mark>	55°C
TEM_F TEM_R	5'-GGTTATGCGTTATATTCGCC-3' 5'-TTAGCGTTGCCAGTGCTC-3'	867 bp	55°C
SHV_F SHV_R	5'-ATGAGTATTCAACATTTCCG-3' 5'-CTGACAGTTACCAATGCTTA-3'	<mark>863 bp</mark>	55°C

1. Phenotype Study Results Double Disks Synergy

➤ All 200 isolates of ceftriaxone-resistant E. coli and ceftriaxone-resistant K. pneumoniae isolated from clinical specimens were found to be ESBL-producers according to the results from the double disks synergy test.

Rate of resistance (%) to various antibiotics in ESBL-producing *E. coli*

Site of Surveilla nce	No. isolates	АМР	АМС	CRO	CAZ	FOX	FEP	CHL	IMP	MEM	CN	CIP	NA	SXT	TE
KM	19	100	63.1	100	63.1	21.0	<mark>68.4</mark>	31.5	0	0	47.3	36.8	42.1	68.4	68.4
MHS	41	100	63.4	100	<mark>95.1</mark>	31.7	80.5	<mark>12.2</mark>	0	0	58.5	<mark>63.4</mark>	53.7	<mark>85.4</mark>	80.5
NCLE	20	100	55.0	100	50.0	15.0	70.0	30.0	0	0	45.0	40.0	20.0	70.0	55.0
SET	43	100	<mark>39.5</mark>	100	58.1	<mark>2.3</mark>	74.4	20.9	0	0	39.5	<mark>72.1</mark>	<mark>74.4</mark>	88.4	88.4

Abbreviations: KM, Khammoun Hospital; MHS, Mahosot Hospital; NCLE, National Center for Laboratory and Epidemiology; SET, Setthathirath Hospital; AM, Ampicillin; AMC, Amoxicillin/Clavulanic Acid; CRO, Ceftriaxone; CAZ, Ceftazidime; FOX, Cefoxitin; CHL, Chloramphenicol; CIP, Ciprofloxacin; FEP Cefepime; CN, Gentamicin; NA, Nalidixic Acid; IMP, Imipenem; MEM, Meropenem; SXT, Co-trimoxazole (SXT); TE, Tetracycline

Rate of resistance (%) to various antibiotics in ESBL-producing *K. pneumoniae*

Site of Surveillance	No. isolates	АМР	АМС	CRO	CAZ	FOX	FEP	CHL	IMP	MEM	CN	CIP	NA	SXT	TE
КМ	31	100	74.2	100	12.9	6.5	96.8	9.7	0	0	93.5	48.4	9.7	19.4	12.9
MHS	9	100	88.9	100	100	0	88.9	22.2	0	0	77.8	<mark>77.8</mark>	<mark>44.4</mark>	88.9	88.9
NCLE	30	100	38.0	100	20.0	10.0	96.7	13.3	0	0	76.7	46.7	13.3	20.0	16.7
SET	7	100	57.1	100	71.4	<mark>14.3</mark>	100	<mark>28.6</mark>	0	0	28.6	100	<mark>57.1</mark>	<mark>57.1</mark>	71.4

Abbreviations: KM, Khammoun Hospital; MHS, Mahosot Hospital; NCLE, National Center for Laboratory and Epidemiology; SET, Setthathirath Hospital; AM, Ampicillin; AMC, Amoxicillin/Clavulanic Acid; CRO, Ceftriaxone; CAZ, Ceftazidime; FOX, Cefoxitin; CHL, Chloramphenicol; CIP, Ciprofloxacin; FEP Cefepime; CN, Gentamicin; NA, Nalidixic Acid; IMP, Imipenem; MEM, Meropenem; SXT, Co-trimoxazole (SXT); TE, Tetracycline

Rate of resistance (%) to various antibiotics in ESBL-producing *E. coli* and ESBL-producing *K. pneumoniae*

Organism	No. isolates	АМР	АМС	CRO	CAZ	FOX	FEP	CHL	IMP	MEM	CN	CIP	NA	SXT	TE
E. coli	123	100	53.9	100	66	19.3	71.4	24.9	0	0	47.6	54.8	<mark>46.2</mark>	<mark>71.1</mark>	<mark>74.3</mark>
K. pneumoniae	77	100	<mark>74.2</mark>	100	50	11.2	<mark>95.6</mark>	18.4	0	0	<mark>66.3</mark>	68.2	28.6	43.5	44.7

Abbreviations: AM, Ampicillin; AMC, Amoxicillin/Clavulanic Acid; CRO, Ceftriaxone; CAZ, Ceftazidime; FOX, Cefoxitin; CHL, Chloramphenicol; CIP, Ciprofloxacin; FEP Cefepime; CN, Gentamicin; NA, Nalidixic Acid; IMP, Imipenem; MEM, Meropenem; SXT, Co-trimoxazole (SXT); TE, Tetracycline

2. Genotype Study Results

Among 200 study isolates, bla_{CTX-M} or bla_{TEM} genes were detected in only 96 isolates (48.0%) in which 1 isolate had both genes and 95 isolates had only one gene, whereas the aforementioned genes were not detected in 104 isolates (52.0%)

Prevalence of *bla_{CTX-M}* genes in ESBL-producing *E. coli* and ESBL-producing *K. pneumoniae* isolates

Site of Surveillance	E. coli	bla _{CTX-M} genes N (%)	K. pneumoniae	bla _{CTX-M} genes N (%)				
KM	19	3 (15.8)	31	11 (35.5)				
MHS	41	22 (53.7)	9	5 (55.6)				
NCLE	20	11 (55.0)	30	10 (33.3)				
SET	43	27 (62.8)	7	4 (57.1)				
Total	123	63 (51.2)	77	30 (39.0)				

Abbreviations: KM, Khammoun Hospital; MHS, Mahosot Hospital; NCLE, National Center for Laboratory and Epidemiology; SET, Setthathirath Hospital

Prevalence of *bla_{TEM}* genes in ESBL-producing *E. coli* and ESBL-producing *K. pneumoniae* isolates

- \triangleright bla_{TEM} genes were detected in only 9.3% of ESBL-producing *E. coli* isolates collected
- Setthathirat Hospital giving the overall prevalence of bla_{TEM} genes of 3.3% in all ESBL-producing *E. coli*
- \triangleright None in all ESBL-producing *K. pneumoniae* isolates contained bla_{TEM} genes
- Therefore, the overall prevalence of bla_{TEM} genes in all E. coli and K. pneumoniae isolates was 2%.

Prevalence of *bla_{SHV}* genes in ESBL-producing *E. coli* and ESBL-producing *K. pneumoniae* isolates

- bla_{SHV} genes in ESBL-producing Escherichia coli and ESBLproducing Klebsiella pneumoniae isolates
- bla_{SHV} genes were not detected in all isolates of ESBL-producing E. coli and ESBL-producing K. pneumoniae.

Discussion

- Since the first ESBL-producing E. coli identified in 2004, there has been a steady increase in the proportion of bacteremia caused by ESBLE in Vientiane. We previously reported that 9% of E. coli causing
- In 2020 was more than 500, this study included only 150 isolates of ceftriaxone-resistant *E. coli* and ceftriaxone-resistant *K. pneumoniae* recovered from the patients in these three surveillance hospitals
- Although there are many types of ESBL genes associated with resistance to the third-generation cephalosporins, this study focused on only 3 genes such as $bla_{\text{CTX-M}}$, bla_{TEM} , and bla_{SHV} because they were the most common genes observed in ceftriaxone-resistant E. coli and ceftriaxone-resistant E. coli and ceftriaxone-resistant E. coli and E0 E1.
- The aforementioned genes were detected in only 48% of the isolates in this study. The most common detected gene was $bla_{\text{CTX-M}}$ which was found in only 51.2% of ceftriaxone-resistant E. coli isolates and only 39.0% of ceftriaxone-resistant K. pneumoniae isolates. This frequency of $bla_{\text{CTX-M}}$ gene was lower than several previous reports.
- The prevalence of bla_{TEM} and bla_{SHV} genes that was detected in ceftriaxone-resistant E. coli and ceftriaxone-resistant K. pneumoniae isolates in this study was also lower than the previous reports.

18

Conclusions

- All isolates of ceftriaxone-resistant *E. coli* and ceftriaxone-resistant *K. pneumoniae* that were included in this study produced ESBLs
- Some isolates were still susceptible to some beta-lactam and non-beta-lactam antibiotics but none of them was resistant to carbapenems
- The most common gene detected in ceftriaxone-resistant $E.\ coli$ and ceftriaxone-resistant $K.\ pneumoniae$ isolates was bla_{CTX-M} which was found in 51.2% of ceftriaxone-resistant $E.\ coli$ isolates and 39.0% of ceftriaxo

Limitation

- Due to logistics and a limited resource and personnel according to the COVID-19 pandemic, we can not collect sample size more than 150 samples
- We can not perform sequence genotype e.g CTX-M1-157....etct

Limitation

- ໃນການເກັບຮັກສາເຊື້ອແບັກເຕີເຣຍໄວ້. ຢາກສືບຕໍ່ຊອກຫາ Wholegenome genotyping, ໃຫ້ກັບບັນດາໄຊ້ທີ່ສົ່ງຕົວຢ່າງມາຢັ້ງຢືນຢູ່ ສວລ
- ມີແຜນໃນການເຮັດໂປສເຕີ ແລະ ຕີພິມບົດ ເພື່ອເຜີຍແຜ່ກ່ຽວກັບໝາກຜົນຂອງການສຶກສາ
- ສືບຕໍ່ເຮັດການສຶກສາການເພິ່ມຂຶ້ນຂອງເຊື້ອໃນຊ່ວງ 2020-2024 ວ່າຈະ ມີຄວາມແຕກຕ່າງທາງດ້ານເປີເຊັນ ຫຼາຍໜ້ອຍປານໃດ